ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kenji Takeshita, Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Masami Shimizu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1572-1578
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30636
Articles are hosted by Taylor and Francis Online.
The application of H2/HTO isotopic exchange method to the tritium recovery at reprocessing plants was investigated. The size of multiunit exchange column was evaluated numerically for the recovery of tritium from the waste water containing a main impurity, HNO3. The Pt-catalyst packed in the exchange column undergoes weak poisoning by HN03. However, the exchange efficiency of catalyst bed η c is maintained at 0.75 even in the presence of 0.1 mol/l HNO3. As the HNO3 concentration in the waste water is estimated as the order of 10−2 mol/l, the column size is little affected by the HNO3 poisoning. The height and diameter of exchange column required for recovering 99% of tritium generated in a 4 t/d reprocessing plant (recovery efficiency ɛ=0.99) are evaluated as about 6m and 0.63m, respectively. When the tritium concentration in the waste gas is depleted below the environmental protection standard (ɛ=0.9999996), they are evaluated as about 19m and 0.57m, respectively.