ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kenji Takeshita, Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Masami Shimizu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1572-1578
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30636
Articles are hosted by Taylor and Francis Online.
The application of H2/HTO isotopic exchange method to the tritium recovery at reprocessing plants was investigated. The size of multiunit exchange column was evaluated numerically for the recovery of tritium from the waste water containing a main impurity, HNO3. The Pt-catalyst packed in the exchange column undergoes weak poisoning by HN03. However, the exchange efficiency of catalyst bed η c is maintained at 0.75 even in the presence of 0.1 mol/l HNO3. As the HNO3 concentration in the waste water is estimated as the order of 10−2 mol/l, the column size is little affected by the HNO3 poisoning. The height and diameter of exchange column required for recovering 99% of tritium generated in a 4 t/d reprocessing plant (recovery efficiency ɛ=0.99) are evaluated as about 6m and 0.63m, respectively. When the tritium concentration in the waste gas is depleted below the environmental protection standard (ɛ=0.9999996), they are evaluated as about 19m and 0.57m, respectively.