ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Kenji Takeshita, Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Masami Shimizu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1572-1578
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30636
Articles are hosted by Taylor and Francis Online.
The application of H2/HTO isotopic exchange method to the tritium recovery at reprocessing plants was investigated. The size of multiunit exchange column was evaluated numerically for the recovery of tritium from the waste water containing a main impurity, HNO3. The Pt-catalyst packed in the exchange column undergoes weak poisoning by HN03. However, the exchange efficiency of catalyst bed η c is maintained at 0.75 even in the presence of 0.1 mol/l HNO3. As the HNO3 concentration in the waste water is estimated as the order of 10−2 mol/l, the column size is little affected by the HNO3 poisoning. The height and diameter of exchange column required for recovering 99% of tritium generated in a 4 t/d reprocessing plant (recovery efficiency ɛ=0.99) are evaluated as about 6m and 0.63m, respectively. When the tritium concentration in the waste gas is depleted below the environmental protection standard (ɛ=0.9999996), they are evaluated as about 19m and 0.57m, respectively.