ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
A.G. Heics, W.T. Shmayda
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1509-1514
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30626
Articles are hosted by Taylor and Francis Online.
An upgraded version of a metal hydride based clean-up systema for tritium gloveboxes has been recently designed. An earlier version of a prototypical, recirculating system has been under evaluation in tritium service at OHT for nearly 2 years. A metal getter alloy, Zr2Fe, is used to remove tritium and trace impurities from inert and nitrogen glovebox cover gas. The second generation SEC system features several notable improvements over its predecessor in areas of gas conductance, process instrumentation for tritium and moisture detection, and operator interface. A second bed has been added to enhance the removal of tritium and impurities. The system is controlled by computer programmed to automatically maintain the glovebox pressure, temperature and the impurity level of the glovebox cover gas, and to respond effectively to upset conditions by corrective action and to alarm the off-normal condition. The lifetime of the metal alloy getter is affected by the presence of impurities, notably moisture, which dictates the need to ensure system leak tightness. For example, the tritium concentration at the bed outlet will rise by approximately one order of magnitude as a result of introducing a continuous moisture load of 5 ppmv for 6 months while maintaining a flow rate of 2 L/s. The second generation system will be commissioned with tritium during 1995. a Metal hydride based clean-up systems utilize a metal getter. A metal hydride is a binary metallic compound or mixture produced when hydrogen is brought into contact with a metal.