ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
K.H. Schrader, A. Perujo
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1416-1419
Tritium Storage, Distribution, and Transportation | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30610
Articles are hosted by Taylor and Francis Online.
This paper presents the design and first tests of a portable uranium getter bed where the drawbacks of the standard available transport getters have been either mitigated or eliminated. The heating of the bed is made internally, ie, heating the uranium by a close contact of the heater element with the material, therefore reducing the temperature of the wall that is shielded from the heat source. Keeping the wall relatively cold reduces the tritium losses by permeation and the heat load to the glovebox. With this design the maximum operating temperature of the external wall is ≈ 373 K, this corresponds to a nominal reduction in permeation of four orders of magnitude.