ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
A. Busigin, C.J. Busigin, J.R. Robins, K.B. Woodall, D.G. Bellamy, C. Fong, K. Kalyanam, S.K. Sood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1312-1316
Design, Operation, and Maintenance of Tritium System | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30592
Articles are hosted by Taylor and Francis Online.
A low inventory Tritium Purification System (TPS) has just been installed at the Princeton Plasma Physics Laboratory (PPPL). The TPS was designed specifically for PPPL, based on their specifications for exhaust gases. The generic design, however, can easily be modified to accept a large variety of input conditions. The Princeton system is designed to have a total tritium inventory of approximately 0.5 g while producing pure product streams consisting of H2, D2, and T2. The purpose of the system is to separate and recycle unburnt tritium from the TFTR and to produce hydrogen and deuterium streams that are free of tritium. These streams can be disposed by stacking, thus eliminating the need to create large volume waste streams that are contaminated with tritium and that must be managed for permanent disposal. This paper will discuss the installation, the modifications and preliminary results of operation of this system at Princeton.