ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Yumi Yaita1, Shigeru O'hira, Kenji Okuno
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1294-1298
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30589
Articles are hosted by Taylor and Francis Online.
Hydrogen retention property on isotropic graphite was studied by exposure with a high flux atomized D/T particles. From the analysis of thermal desorption spectra it is clarified that deuterium implanted to graphite existed in two different states, one was that in a trap site the other was that of C-D bond. The amount of deuterium retained in graphite was in proportion to a half power of total incident fluence and no saturation was observed up to 1026 atoms·m−2. The total hydrogen isotope retention in the sample exposed to atomized D/T particles with total incident fluence of 1025 – 1026 atoms·m−2 were in the range of 1 × 1022−4 × 1022 atoms·m−2.1Visiting researcher from Toshiba Co.