ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M.A. Lomidze, A.E. Gorodetsky, A.P. Zakharov
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1211-1216
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30574
Articles are hosted by Taylor and Francis Online.
In the model two states for accumulated hydrogen (soluble and molecular) are suggested. Under ion irradiation three reactions (events) take place: recombination of soluble hydrogen on irradiated surface; accumulation of molecular hydrogen; molecular percolation. The first reaction describes recombination under and after irradiation. The second reaction describes molecular hydrogen accumulation as statistical packing of the “traps”. The third one describes molecular percolation as a capturing of one more incoming particle in already packed “trap”, that is accompanied by the reemission of H2, by the devastation of the “trap”, and by the increasing of the irradiated surface. Under steady state for molecular accumulation and surface formation, recombination flux approaches the value of incoming flux and no percolation acts take place. Molecular accumulation approaches the steady state prompter than surface formation. The cross sections for (helium/hydrogen) emission changing over hydrogen to helium beam and vice versa were calculated. Simulation of the model coincides with the experimental data of hydrogen retention, reemission, and post-implanted release.