ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R.A. Surette, M.J. Wood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 957-963
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30529
Articles are hosted by Taylor and Francis Online.
We have investigated various commercially available tritium-surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces. The monitors tested were the Berthold LB1210 with both a LB6255 windowless detector and a BZ-200 XK-P xenon counter, a PC-55 windowless proportional counter from Nuclear Measurement Corporation, a Whitlock VSC 5000 surface-contamination monitor, and the Hurfurt “Microcont” surface monitor. A prototype E-perm® electret surface contamination monitor and MeltiLex™, a wax-based plastic scintillant were also evaluated for measuring tritium-surface contamination. None of the methods or instruments evaluated were more sensitive than the swipe/liquid-scintillation counting (LSC) method. Samples measured with open-window proportional counters were, in general, less than half as sensitive, but had the advantages of having the results available almost immediately and requiring minimal sample preparation. Instruments that measure surface contamination directly are sensitive and convenient but the measurement includes some nonremovable component that would not contribute to a person's dose. Instruments that use a detector with any type of window are too insensitive for routine workplace-surface monitoring.