ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
S. Tosti, A. Colombini, V. Violante, G. Simbolotti
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 755-760
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30495
Articles are hosted by Taylor and Francis Online.
A computer model has been developed to evaluate tritium permeation to coolant and in vanadium tubes inventory in Safety and Environmental Assessment of Fusion Power (SEAFP) blanket. The mean tritium partial pressure in gaseous breeder phase are in the range from 0.5 to 5 Pa for helium purge gas velocity from 0.1 to 0.4 m/s; in these conditions the tritium permeation to coolant changes from 32.8 to 16.4 g/day and the tritium inventory in vanadium tubes from 4000 to 2000 g. The H/T ratio involves a relevant tritium permeation variation: with 0.2 m/s helium purge gas velocity varying the H/T ratio from 100 to 50 the tritium permeation to coolant ranges from 23.2 to 32.7 g/day. The analysis shows that defects free thin permeation barriers (SiC and Al2O3) are very effective to making negligible the tritium permeation to coolant and the tritium inventory in tubes.