ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
S. Tosti, A. Colombini, V. Violante, G. Simbolotti
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 755-760
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30495
Articles are hosted by Taylor and Francis Online.
A computer model has been developed to evaluate tritium permeation to coolant and in vanadium tubes inventory in Safety and Environmental Assessment of Fusion Power (SEAFP) blanket. The mean tritium partial pressure in gaseous breeder phase are in the range from 0.5 to 5 Pa for helium purge gas velocity from 0.1 to 0.4 m/s; in these conditions the tritium permeation to coolant changes from 32.8 to 16.4 g/day and the tritium inventory in vanadium tubes from 4000 to 2000 g. The H/T ratio involves a relevant tritium permeation variation: with 0.2 m/s helium purge gas velocity varying the H/T ratio from 100 to 50 the tritium permeation to coolant ranges from 23.2 to 32.7 g/day. The analysis shows that defects free thin permeation barriers (SiC and Al2O3) are very effective to making negligible the tritium permeation to coolant and the tritium inventory in tubes.