ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S.K. Sood, C. Fong, K.M. Kalyanam, K.B. Woodall, A. Busigin
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 742-747
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30493
Articles are hosted by Taylor and Francis Online.
The High Temperature Isotopic Exchange (HITEX) process has been proposed as a simple and reliable option for detritiating impurities in the ITER plasma exhaust.1 The process relies on the well known principle of catalytic equilibration, does not involve complicated decomposition reactions, and avoids the formation of tritiated water. The original HITEX process was conceived as a simple batch system which could yield extremely high detritiation factors (∼ 109). However, batch operation (for an ITER scale/impurity feed compositions) necessitates the holdup of tritium inventory (101 gT) equivalent to one batch in the HITEX feed tank. This paper compares batch and once-through HITEX options in light of calculated and experimental results. Tritium inventories, hydrogen swamping rates and Decontamination Factors (DF's) are compared with the objective of optimizing the process configuration for ITER. A promising HITEX configuration for ITER is composed of a once-through first stage which removes the bulk of the tritium in the impurities, followed by a batch-wise second stage which provides a large decontamination factor. Such a hybrid arrangement promises to produce the required DF of 600,000 with a tritium inventory of < 5 g and a hydrogen swamping ratio of about 26:1. The hybrid arrangement is expected to be robust, since it can be built using industrially proven components.