ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
S.K. Sood, C. Fong, K.M. Kalyanam, K.B. Woodall, A. Busigin
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 742-747
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30493
Articles are hosted by Taylor and Francis Online.
The High Temperature Isotopic Exchange (HITEX) process has been proposed as a simple and reliable option for detritiating impurities in the ITER plasma exhaust.1 The process relies on the well known principle of catalytic equilibration, does not involve complicated decomposition reactions, and avoids the formation of tritiated water. The original HITEX process was conceived as a simple batch system which could yield extremely high detritiation factors (∼ 109). However, batch operation (for an ITER scale/impurity feed compositions) necessitates the holdup of tritium inventory (101 gT) equivalent to one batch in the HITEX feed tank. This paper compares batch and once-through HITEX options in light of calculated and experimental results. Tritium inventories, hydrogen swamping rates and Decontamination Factors (DF's) are compared with the objective of optimizing the process configuration for ITER. A promising HITEX configuration for ITER is composed of a once-through first stage which removes the bulk of the tritium in the impurities, followed by a batch-wise second stage which provides a large decontamination factor. Such a hybrid arrangement promises to produce the required DF of 600,000 with a tritium inventory of < 5 g and a hydrogen swamping ratio of about 26:1. The hybrid arrangement is expected to be robust, since it can be built using industrially proven components.