ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Penzhorn R.-D., Berndt U., Kirste E., Hellriegel W., Jung W., Pejsa R., Romer O.
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 723-731
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30490
Articles are hosted by Taylor and Francis Online.
During commissioning of the PETRA facility all components were tested singly and sequentially using hydrogen isotopes (incl. up to 1.3 g tritium as DT) and relevant impurities. The operation of the facility in conjunction with the required infrastructure systems of the Tritium Laboratory Karlsruhe (TLK) was also demonstrated. To characterize the PETRA PdAg permeator hydrogen break-through curves for H2, De2 and DT as well as He break-through curves for various H2/D2/He gas mixtures were determined at 300 and 400 °C. A suitable method was developed to verify the mechanical integrity of the permeator during runs with tritium. The H2 and D2 permeation losses into the isolation vacuum of the permeator were quantified and compared with model calculations. Hydrogen permeation into the isolation vacuum could be kept at levels low enough to permit an undisturbed continuous operation of the permeator using a ZrCo tritium storage vessel. All pumps and pump combinations were examined with respect to the achievable vacua and compression ratios employing relevant gases and their mixtures. Loop-integrated infrared analysis of high signal and background stability is used to verify the integrity of the permeator and to study the possible occurrence of radiochemical reactions in the gas phase. It was shown that the ZrCo tritium storage vessel of the PETRA facility can be employed avantageously for the handling of tritium when used in combination with a Normetex scroll pump (18 m3/h)/Siemens metal bellows double stage compressor pump sequence. With this combination it is possible to extract at < 320 °C > 98 % of the hydrogen isotopes from the ZrCo storage vessel with a) negligible permeation losses, b) without the danger of disproportionation of the intermetallic compound and c) with minimization of the tritium inventory in the facility.