ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS seeks program evaluators for ABET accreditation
When ABET visits universities for accreditation purposes, it’s crucial that a qualified nuclear expert performs the assessment of that school’s nuclear engineering, radiological engineering, and/or health physics programs. The Accreditation Policies and Procedures Committee (APPC) of the American Nuclear Society works to ensure that a program evaluator (PEV) from the Society leads these ABET assessments.
M. Glugla, R. Kraemer, R.-D. Penzhorn, T.L. Le, K.H. Simon, K. Günther, U. Besserer, P. Schäfer, W. Hellriegel, H. Geißer
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 625-629
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30473
Articles are hosted by Taylor and Francis Online.
A fuel clean-up process for all plasma exhaust gases from DT fusion machines, based on catalytic conversion reactions combined with permeation of hydrogen isotopes through palladium/silver, has been developed. The complete process has already been proven with relevant concentrations of tritium at laboratory scale. On the basis of the results obtained the technical facility ‘CAPRICE’ was designed, and is now under tritium operation at the Tritium Laboratory Karlsruhe (TLK). The facility is being used to demonstrate the process on a target throughput of 10 mol/h DT and 1 mol/h tritiated and non-tritiated impurities. Full scale experiments with hydrogen and deuterium have been completed to verify the design parameters of the facility and to gain detailed knowledge on the performance of the different subsystems under a variety of experimental conditions. Decontamination factors were obtained from these experiments as well as from first tritium runs employing about 350 Ci (0.5 %) tritium in deuterium.