ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
A. Busigin, S.K. Sood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 544-549
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30459
Articles are hosted by Taylor and Francis Online.
Steady state and dynamic simulation studies of the ITER Hydrogen Isotope Separation System (ISS) are presented. Ontario Hydro's FLOSHEET code has been used as the reference code for design studies of the ISS. Dynamic simulations were also carried out using Ontario Hydro's new DYNSIM code. Both codes have been verified against experimental and operating data from operating distillation systems. The DYNSIM code was used to model closed-loop control of the ISS under start-up conditions. The ITER ISS is expected to almost always operate under non-steady-state conditions. Start-up is of particular interest because it defines an upper bound of time to steady state for the system. Normal operation involves feed and product flow adjustments, which are much shorter term perturbations to the system. The simulated control scheme for ITER is similar to Princeton University's TFTR Tritium Purification System (TPS), which has recently been successfully commissioned. For the ITER ISS, dynamic simulation is important because it allows study of product quality control schemes and control system design. It also allows accurate assessment of tritium inventory variation in different operating modes. The cryogenic distillation model in the new DYNSIM code is described here in detail, including the underlying theory and numerical simulation approach. The discussion also addresses the suitability of different ISS design tools in terms of the design process, as well as HETP versus mass transfer modelling approaches.