ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
A. Busigin, S.K. Sood
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 544-549
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30459
Articles are hosted by Taylor and Francis Online.
Steady state and dynamic simulation studies of the ITER Hydrogen Isotope Separation System (ISS) are presented. Ontario Hydro's FLOSHEET code has been used as the reference code for design studies of the ISS. Dynamic simulations were also carried out using Ontario Hydro's new DYNSIM code. Both codes have been verified against experimental and operating data from operating distillation systems. The DYNSIM code was used to model closed-loop control of the ISS under start-up conditions. The ITER ISS is expected to almost always operate under non-steady-state conditions. Start-up is of particular interest because it defines an upper bound of time to steady state for the system. Normal operation involves feed and product flow adjustments, which are much shorter term perturbations to the system. The simulated control scheme for ITER is similar to Princeton University's TFTR Tritium Purification System (TPS), which has recently been successfully commissioned. For the ITER ISS, dynamic simulation is important because it allows study of product quality control schemes and control system design. It also allows accurate assessment of tritium inventory variation in different operating modes. The cryogenic distillation model in the new DYNSIM code is described here in detail, including the underlying theory and numerical simulation approach. The discussion also addresses the suitability of different ISS design tools in terms of the design process, as well as HETP versus mass transfer modelling approaches.