ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. Antidormi, E. Proust, N. Roux (2)
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 519-524
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30455
Articles are hosted by Taylor and Francis Online.
Since lithium-containing ceramics (e.g. Li2O, LiAlO2, Li4SiO4, Li2ZrO3, Li2TiO3) are considered as breeding materials in the blanket of the next generation fusion reactors, several studies are in progress to evaluate their behaviour under irradiation in both operating and accidental conditions. Based on safety and economic considerations tritium inventory and release are the most critical issues for blanket concept. Investigation of tritium transport processes by using comprehensive physical-mathematical models is one of the current activities in this area. Although some analytical models and numerical methods dealing with tritium transport and release in fine-grained ceramic were already developed and applied to interpret results from in-situ and/or post-irradiation annealing experiments, it is necessary that presently available computer codes enlarge their range of applicability to be able to predict, with increased accuracy, the tritium release response for a wider range of experimental conditions and material characteristics. This paper reviews the tritium modelling activity and summarizes the existing transport models and computer codes highlighting models development and focusing on major changes and evolutionary improvements.1 Validation of models by comparison of calculated results with experimental ones is also reported and discussed. Areas of future applications are identified and emphasis is placed upon the growing need of developing more accurate computer codes with the aim to improve the accuracy of blanket tritium inventory estimations.