ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
O. P. Joneja, M. Rosselet, A. Luethi, J. Ligou, R. P. Anand, T. Buchillier
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1663-1673
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30433
Articles are hosted by Taylor and Francis Online.
Heat deposition rate measurements are made by an extremely sensitive quasi-adiabatic graphite calorimeter and thermoluminescent dosimeters (TLDs) in the fusion environment of the LOTUS facility. The response of a bare calorimeter and the response inside a large graphite cylindrical block are measured by irradiating with a mixed neutron and gamma field of the Haefely neutron generator. The reproducibility of these measurements is found to be better than 1% for a dose rate more than 60 cGy/min and better than 3.8% for dose rates in the range of 6 to 60 cGy/min. The heating rates are found to vary linearly with neutron source strength. The calculation to experiment (C/E) for the bare calorimeter is found to be 1.05, whereas inside the graphite block, C/E varies from 1.11 to 1.32. These measurements are analyzed by the MCNP Monte Carlo neutron and photon transport code using the BMCCS2, PHOTXS2, and EL2 cross-section libraries. The influence of wall-returned neutrons and gammas is found to be negligible. The origin of the discrepancies is found by measuring the gamma component of the heating at identical locations by conducting special geometry irradiation using several TLDs-700. The conditions that are employed considerably simplify the transformation of the TLD results to that of the graphite medium. A detailed data treatment is done with the TLD outputs to arrive at the gamma heating component at different locations in the graphite by employing the Burlin theory. The gamma production is found to be well represented in the calculations. On the other hand, measured and calculated net nuclear heating in the graphite differ considerably. A downward revision of the neutron kerma factor would be desirable.