ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
O. P. Joneja, M. Rosselet, A. Luethi, J. Ligou, R. P. Anand, T. Buchillier
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1663-1673
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30433
Articles are hosted by Taylor and Francis Online.
Heat deposition rate measurements are made by an extremely sensitive quasi-adiabatic graphite calorimeter and thermoluminescent dosimeters (TLDs) in the fusion environment of the LOTUS facility. The response of a bare calorimeter and the response inside a large graphite cylindrical block are measured by irradiating with a mixed neutron and gamma field of the Haefely neutron generator. The reproducibility of these measurements is found to be better than 1% for a dose rate more than 60 cGy/min and better than 3.8% for dose rates in the range of 6 to 60 cGy/min. The heating rates are found to vary linearly with neutron source strength. The calculation to experiment (C/E) for the bare calorimeter is found to be 1.05, whereas inside the graphite block, C/E varies from 1.11 to 1.32. These measurements are analyzed by the MCNP Monte Carlo neutron and photon transport code using the BMCCS2, PHOTXS2, and EL2 cross-section libraries. The influence of wall-returned neutrons and gammas is found to be negligible. The origin of the discrepancies is found by measuring the gamma component of the heating at identical locations by conducting special geometry irradiation using several TLDs-700. The conditions that are employed considerably simplify the transformation of the TLD results to that of the graphite medium. A detailed data treatment is done with the TLD outputs to arrive at the gamma heating component at different locations in the graphite by employing the Burlin theory. The gamma production is found to be well represented in the calculations. On the other hand, measured and calculated net nuclear heating in the graphite differ considerably. A downward revision of the neutron kerma factor would be desirable.