ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ileese Glatter Schneir, Barry McQuillan
Fusion Science and Technology | Volume 28 | Number 5 | December 1995 | Pages 1849-1853
Technical Paper | Inertial Confinement Fusion Targets | doi.org/10.13182/FST95-A30424
Articles are hosted by Taylor and Francis Online.
Low density microcellular foams containing dispersed high atomic number material have been produced. The work done by R. Simandl et al., using phase inversion of a binary solvent system and poly (4-methyl 1-pentene) to produce microporous polymer foams was successfully duplicated.1 To enhance the diagnostic properties of the material, molybdenum, a high Z material, was dispersed throughout the foam. We have been able to incorporate the molybdenum into the foam structure while maintaining a relatively low bulk density. Foam samples with initial molybdenum concentrations up to 25 wt % and with bulk densities as low as 15 mg/cc have been produced. The uniformity of the molybdenum dispersion has not yet been quantitatively characterized but does vary from sample to sample.