ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Michael A. Mitchell, Peter Gobby, Norm Elliott
Fusion Science and Technology | Volume 28 | Number 5 | December 1995 | Pages 1844-1848
Technical Paper | Inertial Confinement Fusion Targets | doi.org/10.13182/FST95-A30423
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion (ICF) targets occasionally require the presence of diagnostic dopants to facilitate temperature measurements. To this end poly(4-methyl-1-pentene) (PMP or TPX) foams were produced with very low densities (3 to 5 mg/cc) and low levels of diagnostic dopants. The dopants added to the foams were titanium (Ti), chromium (Cr), and manganese (Mn). The transition metal doped foams were produced with metal loadings as high as 1 wt%, and densities between 3 and 5 mg/cc. The average foam densities were determined using β-transmission, and the dopant amounts were determined using x-ray fluorescence. Procedures for doped foam production and measurements of the resulting foam characteristics will be presented.