ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yukio Oyama, Chikara Konno, Yujiro Ikeda, Seiya Yamaguchi, Koichi Tsuda, Kazuaki Kosako, Hiroshi Maekawa, Masayuki Nakagawa, Takamasa Mori, Tomoo Nakamura, Mohamed A. Abdou, Edgar F. Bennett, Anil Kumar, Mahmoud Z. Youssef, Karl G. Porges
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 216-235
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30406
Articles are hosted by Taylor and Francis Online.
Neutronics experiments for two types of heterogeneous blankets are performed in the Phase-IIC experiments of the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The experimental system uses the same geometry as the previous Phase-IIA series, which was a closed geometry that used a neutron source enclosure of lithium carbonate. The heterogeneities selected for testing are the beryllium edge-on and the water coolant channel assemblies that appear in typical blankets. In the former, the beryllium and the lithium-oxide (Li2O) layers are piled up alternately in the front part of the test blanket. In the latter, the two simulated water cooling channels are emplaced vertically in the Li2O blanket. These channels produce a steep gradient of neutron flux and a significant spectrum change around the material boundary. The calculation accuracy and measurement method for these transient regions are key areas of interest in the experiments. The measurements are performed for the tritium production rate and the other nuclear parameters as well as the previous experiments. The void effect is found to not be negligible around the heterogeneous region for the detector with a low-energy response. At the same time, enhancements of tritium production are seen near the beryllium and hydrogenous material. However, the current Monte Carlo calculation shows good agreement with the experiment even in such a boundary.