ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Yukio Oyama, Chikara Konno, Yujiro Ikeda, Seiya Yamaguchi, Koichi Tsuda, Kazuaki Kosako, Hiroshi Maekawa, Masayuki Nakagawa, Takamasa Mori, Tomoo Nakamura, Mohamed A. Abdou, Edgar F. Bennett, Anil Kumar, Mahmoud Z. Youssef, Karl G. Porges
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 216-235
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30406
Articles are hosted by Taylor and Francis Online.
Neutronics experiments for two types of heterogeneous blankets are performed in the Phase-IIC experiments of the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The experimental system uses the same geometry as the previous Phase-IIA series, which was a closed geometry that used a neutron source enclosure of lithium carbonate. The heterogeneities selected for testing are the beryllium edge-on and the water coolant channel assemblies that appear in typical blankets. In the former, the beryllium and the lithium-oxide (Li2O) layers are piled up alternately in the front part of the test blanket. In the latter, the two simulated water cooling channels are emplaced vertically in the Li2O blanket. These channels produce a steep gradient of neutron flux and a significant spectrum change around the material boundary. The calculation accuracy and measurement method for these transient regions are key areas of interest in the experiments. The measurements are performed for the tritium production rate and the other nuclear parameters as well as the previous experiments. The void effect is found to not be negligible around the heterogeneous region for the detector with a low-energy response. At the same time, enhancements of tritium production are seen near the beryllium and hydrogenous material. However, the current Monte Carlo calculation shows good agreement with the experiment even in such a boundary.