ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Y. Ikeda, A. Kumar, C. Konno, K. Kosako, Y. Oyama, F. Maekawa, H. Maekawa, M. Z. Youssef, M. A. Abdou
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 156-172
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30404
Articles are hosted by Taylor and Francis Online.
Nuclear heat deposition rates in the structural components of a fusion reactor, have been measured directly with a microcalorimeter incorporated with an intense deuterium-tritium (D-T) neutron source, the Fusion Neutronics Source (FNS) at the Japan Atomic Energy Research Institute (JAERI), under the framework of the JAERI/U.S. Department of Energy (U.S. DOE) collaborative program on fusion neutronics. Structural materials of aluminum, titanium, iron, nickel, molybdenum, and Type 304 stainless steel, along with a ceramic of Li2CO3, have been studied with a small-size single probe configuration, subjecting them to D-T neutrons. Heat deposition rates at positions up to 200 mm of depth in a Type 304 stainless steel assembly bombarded with D-T neutrons were measured along with these single probe experiments. The measured heating rates were compared with comprehensive calculations in order to verify the adequacy of the currently available database relevant to the nuclear heating. In general, calculations with data of JENDL-3 and ENDL-85 libraries gave good agreement with experiments for all single probe materials, whereas RMCCS, based on ENDF/B-V, suffered from unreasonable overestimation in the heating number. For Li2CO3 with a low heat conduction coefficient, analysis was carried out by using a heat transfer calculation code ADINAT, coupled with the neutron and gamma-ray transport DOT3.5. It was demonstrated that the nuclear/thermal coupled calculation is a powerful tool to analyze the time-dependent temperature change due to the heat transfer in the probe materials. The analysis for the Type 304 stainless steel assembly, based on JENDL-3, demonstrated that the calculation, in general, was in good agreement with the measurement up to 200 mm of depth along the central axis of the assembly. The experimental approach demonstrated in this study clearly showed the feasibility of the calorimeter to measure the nuclear heating for the neutron field where the 14-MeV contribution is relatively small in comparison with the low-energy neutron contribution.