ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Applications open to women for 2025 IAEA fellowship program
The application period for the International Atomic Energy Agency’s Marie Sklodowska-Curie Fellowship Program (MSCFP) has opened. Women interested in studying nuclear-related subjects at the master’s degree level should apply by October 31, 2025.
More information on how to apply can be found here.
Y. Ikeda, A. Kumar, C. Konno, K. Kosako, Y. Oyama, F. Maekawa, H. Maekawa, M. Z. Youssef, M. A. Abdou
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 74-98
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30402
Articles are hosted by Taylor and Francis Online.
To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC*63, and REAC*175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC*175, LIB90, and REAC*63, in this order. Clear suggestions for a future direction to improve the overall calculation accuracy are developed based on the current experimental analysis.