ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Work-study master’s program in nuclear offered in Italy
Energy company Ansaldo Energia recently hosted a ceremony at its headquarters in Genoa, Italy, marking the launch of the Master in Technologies for Nuclear Power Plants program, which it developed in collaboration with Politecnico di Milano. A call for graduates in engineering, physics, and chemistry issued in May attracted more than 300 applications, 26 of which were selected for the program.
M. A. Abdou, H. Maekawa, Y. Oyama, M. Youssef, Y. Ikeda, A. Kumar, C. Konno, F. Maekawa, K. Kosako, T. Nakamura, E. Bennett
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 5-38
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30399
Articles are hosted by Taylor and Francis Online.
A large number of integral experiments for fusion blanket neutronics were performed using deuterium-tritium (D-T) neutrons at the Fusion Neutronics Source facility as part of a 10-yr collaborative program between the Japan Atomic Energy Research Institute and the United States. A series of experiments was conducted using blanket assemblies that contained Li2O, beryllium, steel, and water-coolant channels with a point neutron source in a closed geometry that simulated well the neutron spectra in fusion systems. Another series of experiments was conducted using a novel approach in which the point source simulated a pseudo-line source inside a movable annular blanket test assembly, thus providing a better simulation of the angular flux distribution of the 14-MeV neutrons incident on the first wall of a tokamak system. A number of measurement techniques were developed for tritium production, induced radioactivity, and nuclear heating. Transport calculations were performed using three-dimensional Monte Carlo and two-dimensional discrete ordinates codes and the latest nuclear data libraries in Japan and the United States. Significant differences among measurement techniques and calculation methods were found. To assure a 90% confidence level for tritium breeding calculations not to exceed measurements, designers should use a safety factor >1.1 to 1.2, depending on the calculation method. Such a safety factor may not be affordable with most candidate blanket designs. Therefore, demonstration of tritium self-sufficiency is recommended as a high priority for testing in near-term fusion facilities such as the International Thermonuclear Experimental Reactor (ITER). The radioactivity measurements were performed for >20 materials with the focus on gamma emitters with half-lives <5yr. The ratio of the calculated-to-experimental (C/E) values ranged between 0.5 and 1.5, but it deviated greatly from unity for some materials with some cases exceeding 5 and others falling below 0.1. Most discrepancies were attributed directly to deficiencies in the activation libraries, particularly errors in cross sections for certain reactions. A microcalorimetric technique was vastly improved, and it allowed measurements of the total nuclear heating with a temperature rise as low as 1 µK/s. The C/E ratio for nuclear heating deviated from 1 by as much as 70% for some materials but by only a few percent for others.