ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
V. Ya. Goloborod'ko, V. V. Lutsenko, S. N. Reznik, V. A. Yavorskij
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 292-297
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30391
Articles are hosted by Taylor and Francis Online.
Three-dimensional Fokker-Planck simulation of collisional losses of mega-electron-volt fusion products in axisymmetric tokamaks with plasma currents I < 2 MA is carried out. The calculations take into account both loss due to radial diffusion and loss caused by pitch-angle scattering in the first-orbit loss region in velocity space. Collisional losses of deuterium-deuterium (D-D) fusion products in the energy range 0.5 ≤ ε/ε0 ≤ 1 (where ε0 is the birth energy) are found to be increased with plasma current and comparable to a first-orbit loss at I > 1.5 MA. The loss mechanism considered may be responsible for the observed experimentally delayed losses of D-D fusion products in the Tokamak Fusion Test Reactor (TFTR). The dependencies of collisional losses on plasma current, effective charge number of the plasma (Zeff), and aspect ratio are investigated. The distributions of escaped ions over pitch angles, energies, and poloidal angles are evaluated. The fraction of collisionally lost fast fusion products is shown to scale like (ν⊥/νs)0.6 or (here ν⊥ and νs are characteristic collision rates of pitch-angle scattering and slowing down, respectively). The approach used may be considered as an alternative to the approach based on Monte Carlo modeling of scattering and can serve as a validity check of the latter.