ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. M. Stacey, Jr.
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 277-291
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30390
Articles are hosted by Taylor and Francis Online.
The strong radial gradients that exist in the plasma edge (scrape-off layer and divertor) of tokamaks increase the magnitude of some previously neglected viscous terms to the same order as the other terms traditionally included in fluid plasma transport calculations. The standard fluid equations are modified to include these new viscous force and heat flux terms that are important in the plasma edge. These new terms give rise to viscous-driven radial particle and energy fluxes that are estimated to cause an order unity reduction in the radial peaking of energy fluxes incident on divertor collector platesy thus illustrating the importance of taking them into account in fluid calculations of divertor operation. A viscous drift velocity is found to be comparable in magnitude to the standard E × B and pressure gradient-driven drift velocities. The modified fluid equations are formulated to facilitate the inclusion of these important new viscous terms into fluid transport codes used for tokamak edge modeling.