ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ronald C. Kirkpatrick, Irvin R. Lindemuth, Marjorie S. Ward
Fusion Science and Technology | Volume 27 | Number 3 | May 1995 | Pages 201-214
Technical Paper | doi.org/10.13182/FST95-A30382
Articles are hosted by Taylor and Francis Online.
The magnetized target fusion (MTF) concept is explained, and the underlying principles are discussed. The necessity of creating a target plasma and the advantage of decoupling its creation from the implosion used to achieve fusion ignition are explained. The Sandia National Laboratories Φ-target experiments is one concrete example of the MTF concept, but other experiments have involved some elements of MTF. Lindl-Widner diagrams are used to elucidate the parameter space available to MTF and the physics of MTF ignition. Magnetized target fusion has both limitations and advantages relative to inertial confinement fusion. The chief advantage is that the driver for an MTF target can be orders of magnitude less powerful and intense than what is required for other inertial fusion approaches. A number of critical issues challenge the practical realization of MTF. Past experience, critical issues, and potential integral MTF experiments are discussed.