ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC issues Palisades’ final environmental assessment of no significant findings
The Palisades nulear power plant received a final “clean bill” of environmental assessment impact from the Nuclear Regulatory Commission today.
The NRC’s staff EA and conclusion of no significant environmental impact for the Covert, Mich., plant, which plans to restart after operations were halted three years ago this month due to economic hardships in the energy market.
Koichi Maki, Satoshi Satoh, Hideyuki Takatsu, Yasushi Seki
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 176-182
Technical Paper | Special Section: Pulsed High-Density Systems / Maintenance | doi.org/10.13182/FST95-A30374
Articles are hosted by Taylor and Francis Online.
According to the International Thermonuclear Experimental Reactor (ITER) conceptual design activity, after reactor shutdown, damaged segments are pulled up from the reactor and hung from the reactor room ceiling by a remote handling device. The dose rate in the reactor room and the environment is estimated for this situation, and the following results are obtained: First, the dose rate in the room is >108 µSv/h. Since this dose rate is 107 times greater than the biological radiation shielding design limit of 25 µSv/h, workers cannot enter the room. Second, lenses and optical fiber composed of glass that is radiation resistant up to 106 Gy would be damaged after <100 h near the segment, and devices using semiconductors could not work after several hours or so in the aforementioned dose-rate conditions. Third, during suspension of one blanket segment from the ceiling, the dose rate in the site boundary can be reduced by one order by a 23-cm-thicker reactor building roof. To reduce dose rate in public exposure to a value that is less than one-tenth of the public exposure radiation shielding design limit of 100 µSv/yr, the distance of the site boundary from the reactor must be greater than 200 m for a reactor building with a 160-cm-thick concrete roof.