ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Eriko Jotaki, Satoshi Itoh
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 171-175
Technical Paper | Special Section: Pulsed High-Density Systems / Instrumentation and Data Handling | doi.org/10.13182/FST95-A30373
Articles are hosted by Taylor and Francis Online.
Long discharges have been demonstrated by lower hybrid current-drive experiments on some tokamak devices. Discharges of longer than 1000 s are also planned for the International Thermonuclear Experimental Reactor (ITER) and Tokamak Physics Experiment (TPX) projects. In the case of long-time or steady-state operation, it is important to monitor the plasma parameters continuously and change the operational conditions during the discharge to maintain the plasma current. However, a conventional data acquisition and analysis system cannot follow these operations because it must show the results after each pulse. A new system that can continuously monitor and support steady-state operation is necessary. A new system is developed in which the signal flow is divided into branches, and one series of processing is made to switch alternately among the groups in every regular desired interval. An application of this system has been demonstrated on a 1-h discharge by TRIAM-1M.