ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Industry Update—June 2025
Here is a recap of industry happenings from the recent past:
DOD selects companies for its installations microreactor program
The Department of Defense has selected eight technology companies as being eligible to seek funding for developing microreactor technologies as part of the DOD’s Advanced Nuclear Power for Installations program. That program seeks to “design, license, build, and operate one or more microreactor nuclear power plants on military installations . . . to support global operations across land, air, sea, space, and cyberspace.” The selected companies are Antares Nuclear, BWXT Advanced Technologies, General Atomics Electromagnetic Systems, Kairos Power, Oklo, Radiant Industries, Westinghouse Government Services, and X-energy. Specific objectives of the DOD program are to “field a decentralized scalable microreactor system capable of producing enough electrical power to meet 100 percent of all critical loads” and to “utilize the civil regulatory pathways of the Nuclear Regulatory Commission to stimulate commercial nuclear microreactor technology development and the associated supply chains in the U.S.”
J. H. Degnan, W. L. Baker, M. L. Alme, C. Boyer, J. S. Buff, J. D. Beason, C. J. Clouse, S. K. Coffey, D. Dietz, M. H. Frese, J. D. Graham, D. J. Hall, J. L. Holmes, E. A. Lopez, R. E. Peterkin, Jr., D. W. Price, N. F. Roderick, S. W. Seiler, C. R. Sovinec, P. J. Turchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 115-123
Experimental Device | Special Section: Pulsed High-Density Systems | doi.org/10.13182/FST95-A30368
Articles are hosted by Taylor and Francis Online.
Electromagnetic implosions of shaped cylindrical aluminum liners that remain at solid density are discussed. The approximate liner parameters have an initial radius of 3 to 4 cm, are 4 cm in height, and are ∼0.1 cm thick. The liners are driven by the Shiva Star 1300-µf capacitor bank at an 84-kV charging voltage and an ∼30-nH total initial inductance (including implosion load). The discharge current travels along the length of the liner and rises to 14 MA in ∼8 µs. The implosion time is ∼12 µs. Diagnostics include inductive current and capacitive voltage probes, magnetic probes, and radiography. Both right-circular cylinder and conical liner implosion data are displayed and discussed. Radiography indicates implosion behavior substantially consistent with two-dimensional magnetohydrodynamic calculations, which predict inner surface implosion velocities exceeding 20 km/s, and compressed density of two to three times solid density. Less growth of perturbations is evident for the conical liner (∼1% thickness tolerance) than for the right-circular cylindrical liner (∼3% thickness tolerance).