ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Applications open to women for 2025 IAEA fellowship program
The application period for the International Atomic Energy Agency’s Marie Sklodowska-Curie Fellowship Program (MSCFP) has opened. Women interested in studying nuclear-related subjects at the master’s degree level should apply by October 31, 2025.
More information on how to apply can be found here.
Francesco Ghezzi, Natesan Venkataramani, Andrea Conte, Giovanni Bonizzoni, W. T. Shmayda
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 458-475
Technical Paper | Tritium System | doi.org/10.13182/FST95-A30364
Articles are hosted by Taylor and Francis Online.
Experimental investigation of the reaction of light and heavy water vapors with a metallic alloy and the release of hydrogen by batch-mode conversion with a Zr(V0.5Fe0.5)2 getter is presented. The dependence of cracking of water vapor on the alloy temperature and water vapor pressure is studied. The roles of initial as well as increasing concentrations of hydrogen and oxygen in the alloy are delineated. The conversion rate constant is observed to shift from being surface dissociation process-dependent to bulk diffusion process-dominated during the conversion process. Hydrogen sorption in the alloy and its release during the batch conversion of water vapor, which assumes considerable significance from the perspective of recovering tritium as fuel gas from tritiated water waste, are discussed based on the studies performed that maintained the getter at various temperatures in the range of 100 to 400°C and over a water vapor pressure range of 50 to 500 Pa, with various hydrogen and oxygen concentrations in the getter alloy.