ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Francesco Ghezzi, Natesan Venkataramani, Andrea Conte, Giovanni Bonizzoni, W. T. Shmayda
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 458-475
Technical Paper | Tritium System | doi.org/10.13182/FST95-A30364
Articles are hosted by Taylor and Francis Online.
Experimental investigation of the reaction of light and heavy water vapors with a metallic alloy and the release of hydrogen by batch-mode conversion with a Zr(V0.5Fe0.5)2 getter is presented. The dependence of cracking of water vapor on the alloy temperature and water vapor pressure is studied. The roles of initial as well as increasing concentrations of hydrogen and oxygen in the alloy are delineated. The conversion rate constant is observed to shift from being surface dissociation process-dependent to bulk diffusion process-dominated during the conversion process. Hydrogen sorption in the alloy and its release during the batch conversion of water vapor, which assumes considerable significance from the perspective of recovering tritium as fuel gas from tritiated water waste, are discussed based on the studies performed that maintained the getter at various temperatures in the range of 100 to 400°C and over a water vapor pressure range of 50 to 500 Pa, with various hydrogen and oxygen concentrations in the getter alloy.