ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Ken-Ichi Tsuchiya, Kazutoshi Ohashi, Mitsuru Fukuchi
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 452-457
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST95-A30363
Articles are hosted by Taylor and Francis Online.
The boson tendency to clump deuterons in palladium, which is caused by an attractive force, supplies kinetic energy to deuterons moving toward the center of the cluster. On the other hand, repulsive forces between deuterons in the cluster reduce the tendency to clump. The deuteron with kinetic energy determined from these two forces may penetrate the barrier by a tunneling effect at the center of the cluster. In this research, the transmission coefficient and power density generated from cold nuclear fusion are calculated as functions of the number of deuterons included in the cluster. When a nonlinear screened deuteron-deuteron pair potential is used as a repulsion, power densities for clusters that include 24 deuterons are 10.8 W/cm3, which gives good fit to the experimental results of 10 W/cm3 by Fleischmann et al.