ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
George Tsotridis, Hans Rother
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 389-400
Technical Paper | First-Wall Technology | doi.org/10.13182/FST95-A30359
Articles are hosted by Taylor and Francis Online.
Plasma disruptions infusion reactors lead to high-energy deposition for short periods of time, causing melting of the first wall. A two-dimensional transient computer model has been developed that, by solving the equations of motion and energy, predicts the depths and the motion of the molten layers in small beam simulation experiments. It is demonstrated that convective flows caused by variations of surface tension—due to changes in material chemistry and surface temperature—play an important role in determining the depth and flow intensities of the molten layers. The calculated shapes and depths of the molten layers for Type 316 stainless steel have been compared with available experimental results and found to be in good agreement.