ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Osamu Mitarai, Sigeru Sudo
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 377-388
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30358
Articles are hosted by Taylor and Francis Online.
Ignition characteristics in deuterium-tritium helical (stellarator) reactors of various sizes are studied with the operation path method on the plane and the POPCON method. Based on empirical large helical device scaling, confinement must be improved by a factor > 1.5 for reaching ignition and a factor >γH = 2 for optimum fusion power in a helical reactor with R > 8 m, ā = 2 m, and B0 > 6 T. The density limit and the confinement time saturation effect with respect to the density degrade the favorable density scaling of the confinement time (τE ∝ n0.69) and are found to be important limiting factors for ignition characteristics. For a reactor with R = 10 m, ā = 2 m, γH = 2, and B0 = 7 T and with an excess heating power Pex = 100 MW, the minimum auxiliary heating power is ∼55 MW at an operating density 40% below the density limit, and ignition can be reached in a finite time. The ignition characteristics for larger size reactors (R = 15 and 20 m) and gyro-reduced Bohm scaling are also studied.