ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Osamu Mitarai, Sigeru Sudo
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 377-388
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30358
Articles are hosted by Taylor and Francis Online.
Ignition characteristics in deuterium-tritium helical (stellarator) reactors of various sizes are studied with the operation path method on the plane and the POPCON method. Based on empirical large helical device scaling, confinement must be improved by a factor > 1.5 for reaching ignition and a factor >γH = 2 for optimum fusion power in a helical reactor with R > 8 m, ā = 2 m, and B0 > 6 T. The density limit and the confinement time saturation effect with respect to the density degrade the favorable density scaling of the confinement time (τE ∝ n0.69) and are found to be important limiting factors for ignition characteristics. For a reactor with R = 10 m, ā = 2 m, γH = 2, and B0 = 7 T and with an excess heating power Pex = 100 MW, the minimum auxiliary heating power is ∼55 MW at an operating density 40% below the density limit, and ignition can be reached in a finite time. The ignition characteristics for larger size reactors (R = 15 and 20 m) and gyro-reduced Bohm scaling are also studied.