ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Osamu Mitarai, Sigeru Sudo
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 377-388
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30358
Articles are hosted by Taylor and Francis Online.
Ignition characteristics in deuterium-tritium helical (stellarator) reactors of various sizes are studied with the operation path method on the plane and the POPCON method. Based on empirical large helical device scaling, confinement must be improved by a factor > 1.5 for reaching ignition and a factor >γH = 2 for optimum fusion power in a helical reactor with R > 8 m, ā = 2 m, and B0 > 6 T. The density limit and the confinement time saturation effect with respect to the density degrade the favorable density scaling of the confinement time (τE ∝ n0.69) and are found to be important limiting factors for ignition characteristics. For a reactor with R = 10 m, ā = 2 m, γH = 2, and B0 = 7 T and with an excess heating power Pex = 100 MW, the minimum auxiliary heating power is ∼55 MW at an operating density 40% below the density limit, and ignition can be reached in a finite time. The ignition characteristics for larger size reactors (R = 15 and 20 m) and gyro-reduced Bohm scaling are also studied.