ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC issues Palisades’ final environmental assessment of no significant findings
The Palisades nulear power plant received a final “clean bill” of environmental assessment impact from the Nuclear Regulatory Commission today.
The NRC’s staff EA and conclusion of no significant environmental impact for the Covert, Mich., plant, which plans to restart after operations were halted three years ago this month due to economic hardships in the energy market.
Osamu Mitarai, Sigeru Sudo
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 377-388
Technical Paper | Plasma Engineering | doi.org/10.13182/FST95-A30358
Articles are hosted by Taylor and Francis Online.
Ignition characteristics in deuterium-tritium helical (stellarator) reactors of various sizes are studied with the operation path method on the plane and the POPCON method. Based on empirical large helical device scaling, confinement must be improved by a factor > 1.5 for reaching ignition and a factor >γH = 2 for optimum fusion power in a helical reactor with R > 8 m, ā = 2 m, and B0 > 6 T. The density limit and the confinement time saturation effect with respect to the density degrade the favorable density scaling of the confinement time (τE ∝ n0.69) and are found to be important limiting factors for ignition characteristics. For a reactor with R = 10 m, ā = 2 m, γH = 2, and B0 = 7 T and with an excess heating power Pex = 100 MW, the minimum auxiliary heating power is ∼55 MW at an operating density 40% below the density limit, and ignition can be reached in a finite time. The ignition characteristics for larger size reactors (R = 15 and 20 m) and gyro-reduced Bohm scaling are also studied.