ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Robert Kin-Yan Wong, Edward C. Morse
Fusion Science and Technology | Volume 27 | Number 4 | July 1995 | Pages 364-376
Technical Paper | Plasma Heating System | doi.org/10.13182/FST95-A30357
Articles are hosted by Taylor and Francis Online.
A quasi-optical electron cyclotron maser operating at 28 GHz is studied for applications in heating fusion plasmas. Large spherical mirrors with a small axial aperture and coupling mirror form the open resonator. In the experiment, both the large mirror and coupling mirror are adjusted to select a preferential mode of operation. This is found to improve the efficiency of interaction. Maximum efficiency was observed with a 2.5-A, 60-kV electron beam, with efficiency declining at higher currents. Water calorimetry was used to measure an efficiency of 10%. A photon-drag detector indicated higher peak power levels than those measured with calorimetry. The high-efficiency mode was due to the overlap of two cavity eigenmodes TEMn00 and TEM(n−1)10 (cylindrical notation) and to beam trapping effects that caused a better match between the beam footprint and the electric field profile than in other configurations tested.