ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC issues Palisades’ final environmental assessment of no significant findings
The Palisades nulear power plant received a final “clean bill” of environmental assessment impact from the Nuclear Regulatory Commission today.
The NRC’s staff EA and conclusion of no significant environmental impact for the Covert, Mich., plant, which plans to restart after operations were halted three years ago this month due to economic hardships in the energy market.
David A. Noever
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 86-102
Technical Paper | Fusion Reactor | doi.org/10.13182/FST95-A30352
Articles are hosted by Taylor and Francis Online.
The possibility of enhancing the ratio of output to input power Q in a simple mirror machine by polarizing deuterium-tritium (D-T) nuclei is evaluated. Taking the Livermore mirror reference design mirror ratio of 6.54, the expected sin2 ϑ angular distribution of fusion decay products reduces immediate losses of alpha particles to the loss cone by 7.6% and alpha-ion scattering losses by ∼50%. Based on these findings, alphaparticle confinement times for a polarized plasma should therefore be 1.11 times greater than for isotropic nuclei. Coupling this enhanced alpha-particle heating with the expected > 50% D-T reaction cross section, a corresponding power ratio for polarized nuclei, Qpolarized, is found to be 1.63 times greater than the classical unpolarized value Qclassical. The effects of this increase in Q are assessed for the simple mirror.