ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. Bellanger
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 46-58
Technical Paper | Tritium System | doi.org/10.13182/FST95-A30349
Articles are hosted by Taylor and Francis Online.
An attempt was undertaken to investigate the localized corrosion susceptibility of tritiated oxidized weldments of Type 316L austenitic stainless steel made by the tungsten inert gas process. For this, the distribution of tritium at the surface was determined using a scintillation spectrophotometer. Depending on the values, the amounts of tritium are high enough to degrade the oxide. The polarization curves show a corrosion potential lower than that of a nontritiated weld. This means that tritiated welds have a less “noble” behavior. It is observed by voltammetry that the reduction of corrosion products always occurs during the cathodic scans, meaning less passivity for tritiated welds. Using electrochemical impedance spectroscopy, the values of electron and ionic diffusion within the passive oxide were deduced. The tritiated oxide layer is thinner, and a higher concentration of electron carriers is observed; this indicates a less insulating oxide. The difference in electron carriers may come from ionization and breakdowns of the oxide layer by tritium and the energy released. The scanning electron microscopy (SEM) examinations show a complex microstructure of the tritiated surface that could be attributed both to the welding process and a severe degradation by tritium and energy released from the decay. It is well known that the ferrite is formed in the austenite during welding; this certainly leads to corrosion of ferrite/austenite surface borders. This corrosion may be facilitated by the presence of tritium trapped at these surface borders, and the microcracks would nucleate leading to no cohesion of austenite. This mechanism is difficult to verify by SEM for stainless steel highly degraded by tritium and the energy released, but the visual examinations would appear to well support the results obtained by electrochemical methods, where the oxide is damaged.