ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
G. Bellanger
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 36-45
Technical Paper | Tritium System | doi.org/10.13182/FST95-A30348
Articles are hosted by Taylor and Francis Online.
Palladium-silver cathodic membranes are used in industrial tritiated water processing to produce very high purity tritium gas and its isotopes. During electrolysis, these adsorb on the cathodic surface, diffuse through the alloy, and finally are desorbed on the side opposite of the cathodic entry surface. This desorption occurs in a gastight compartment separated from the electrolyzer allowing the recuperation of pure isotopes. The diffusion is dependent on cathodic surface, PdAg thickness, temperature, deposits on the surface to favor the adsorption, and applied cathodic potential. Here, the embrittlement of palladium and PdAg alloy cathode membranes and the diffusion and solubility parameters were studied in tritiated water. Voltammetry curves were plotted to ascertain the conditions of cathodic charging with tritium as well as the effect ofradiolytic hydrogen peroxide on palladium or PdAg. From the voltammetric curves, the diffusion coefficient, the surface solubility of tritium, and the thickness of the palladium and PdAg alloy involved were determined. Scanning electron microscope examinations show that the cracking is transgranular in the case of palladium, while it appears to be intergranularfor the PdAg alloy. With palladium, this cracking involves all the surface subjected to charging, whereas for the alloy, only the surface at the electrolyzer gas atmosphere/electrolyte bordering zone would appear to be embrittled. This could be the result of the presence of two tritiated phases in palladium or in palladium-silver. The PdAg alloy is the less sensitive to embrittlement.