ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Yoshinori Kawamura, Masabumi Nishikawa
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 25-35
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30347
Articles are hosted by Taylor and Francis Online.
The release behavior of tritium bred in the blanket has been studied with in-situ experiments, and most of the results are analyzed assuming that the overall release process of tritium is mainly controlled with the process of tritium diffusion in the crystal grain. However, quantification of the water adsorption and desorption rate on various ceramic breeder materials is important because the chemical form of release tritium is tritiated water. The current authors carried out the water adsorption and desorption experiments on various ceramic breeder materials using a breakthrough method and the adsorption and desorption rate of water at the surface of various ceramic breeder materials were estimated from the breakthrough curve and release curve of water obtained in this work. The breakthrough curves or desorption curves were expressed assuming that two kinds of adsorption or desorption processes having different mass transfer rates proceed at the same time. The hypothetical tritium diffusivities in the crystal grain evaluated from the water desorption rate obtained in this work were compared with the reported value as the tritium diffusivity in the crystal grain. It is probable that the tritium diffusivity in the crystal grain reported so far is strongly affected by the resistance of surface reaction and the system effect.