ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC issues Palisades’ final environmental assessment of no significant findings
The Palisades nulear power plant received a final “clean bill” of environmental assessment impact from the Nuclear Regulatory Commission today.
The NRC’s staff EA and conclusion of no significant environmental impact for the Covert, Mich., plant, which plans to restart after operations were halted three years ago this month due to economic hardships in the energy market.
Yoshinori Kawamura, Masabumi Nishikawa
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 25-35
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30347
Articles are hosted by Taylor and Francis Online.
The release behavior of tritium bred in the blanket has been studied with in-situ experiments, and most of the results are analyzed assuming that the overall release process of tritium is mainly controlled with the process of tritium diffusion in the crystal grain. However, quantification of the water adsorption and desorption rate on various ceramic breeder materials is important because the chemical form of release tritium is tritiated water. The current authors carried out the water adsorption and desorption experiments on various ceramic breeder materials using a breakthrough method and the adsorption and desorption rate of water at the surface of various ceramic breeder materials were estimated from the breakthrough curve and release curve of water obtained in this work. The breakthrough curves or desorption curves were expressed assuming that two kinds of adsorption or desorption processes having different mass transfer rates proceed at the same time. The hypothetical tritium diffusivities in the crystal grain evaluated from the water desorption rate obtained in this work were compared with the reported value as the tritium diffusivity in the crystal grain. It is probable that the tritium diffusivity in the crystal grain reported so far is strongly affected by the resistance of surface reaction and the system effect.