ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
L. Bühler
Fusion Science and Technology | Volume 27 | Number 1 | January 1995 | Pages 3-24
Technical Paper | Blanket Engineering | doi.org/10.13182/FST95-A30346
Articles are hosted by Taylor and Francis Online.
Magnetohydrodynamic flows play an important role in the design of liquid-metal fusion reactor blankets. The interaction of the plasma-confining strong magnetic field and the electrically conducting coolant and breeding material may cause high pressure drop and unusual flow structures compared with hydrodynamic flows. In strong magnetic fields, duct flows exhibit a core where viscous effects are unimportant, while all flow variables are matched to the boundary conditions within extremely thin layers. In the inertialess inductionless limit, the governing equations can be reduced to a set of coupled two-dimensional equations for pressure and potential through analytical integration in the core and the layers. The use of curvilinear boundary-fitted coordinates leads to a unique numerical procedure for flow calculations in arbitrary geometries. The wide range of possible applications is demonstrated by some examples.