ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Yuichi Ogawa, Nobuyuki Inoue, Kunihiko Okano
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 168-178
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30340
Articles are hosted by Taylor and Francis Online.
As an intense 14-MeV neutron source, a steady-state subignited tokamak plasma is proposed, where a 60-MW neutral beam is injected to sustain a subignited plasma and to drive a plasma current for steady-state operation. Plasma and device parameters are self-consistently designed, taking into account physical (confinement characteristics, beta limit, current drive efficiency, and so on) and engineering (maximum magnetic field strength, blanket/shield thickness, and others) constraints. The result of a comparison between plasmas with A = 2.8 and A = 4 indicates that a large aspect-ratio device is preferable as a neutron source. A surface-averaged 14-MeV neutron flux of ∼0.6 MW/m2 is achievable with R = 4 to 5 m, A = 4, and Bmax = 10 T and is not so sensitive to the major radius. When the maximum magnetic field strength of toroidal field coils is raised to 13 T, a neutron flux more than 1 MW/m2 is available with a device with R = 4 m. If the plasma performance is advanced and plasmas with an L-mode enhancement factor fL of ∼3 and a Troyon coefficient in beta limit g of ∼5 are attainable, a neutron flux of ∼1.6 MW/m2 is achievable even with a device with R = 4 m and Bmax = 10 T. These devices seem to be very attractive not only as a neutron source but also as a supplementary device of an ignition-oriented International Thermonuclear Experimental Reactor (ITER) device.