ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R. W. Bussard, N. A. Krall
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1326-1336
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30317
Articles are hosted by Taylor and Francis Online.
Performance scaling of fusion power sources shows that Maxwellian, magnetic, local-thermodynamic-equilibrium (MM/LTE) devices require much larger sizes and B fields than do electron-driven, inertial-electrostatic-confinement (EXL/IEC) systems for the same output. Basic economics analyses show that systems of either type must be small in size to be economically viable. This requires operation at high fusion power density and first-wall thermal fluxes; flux levels needed are well within those of practical power engineering experience. The EXL/IEC systems can satisfy these demands more readily than can MM/LTE systems. They can be operated to avoid particle thermalization, preserve ion core convergence, and yield a large power gain against losses (e.g., bremsstrahlung) for all fuels from deuterium-tritium to p-11B and 3He3He. Direct conversion of charged-particle energy, without arcing, is inherently straightforward in the quasispherical field geometry. If losses prove to be governed by classical physics phenomena rather than turbulent transport, all research and development (R&D) from physics studies to power plants can be done at a single size (≈3-m radius) and B field (≈1.2 T, 12 kG); no scaling growth in size or field is required. Consequent R&D costs and time scales are estimated to be <12 years and $1 billion for development of prototype EXL/IEC fusion power systems. Research investment seems warranted in this small-scale alternative to large-scale MM/LTE systems.