ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
R. W. Bussard, N. A. Krall
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1326-1336
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30317
Articles are hosted by Taylor and Francis Online.
Performance scaling of fusion power sources shows that Maxwellian, magnetic, local-thermodynamic-equilibrium (MM/LTE) devices require much larger sizes and B fields than do electron-driven, inertial-electrostatic-confinement (EXL/IEC) systems for the same output. Basic economics analyses show that systems of either type must be small in size to be economically viable. This requires operation at high fusion power density and first-wall thermal fluxes; flux levels needed are well within those of practical power engineering experience. The EXL/IEC systems can satisfy these demands more readily than can MM/LTE systems. They can be operated to avoid particle thermalization, preserve ion core convergence, and yield a large power gain against losses (e.g., bremsstrahlung) for all fuels from deuterium-tritium to p-11B and 3He3He. Direct conversion of charged-particle energy, without arcing, is inherently straightforward in the quasispherical field geometry. If losses prove to be governed by classical physics phenomena rather than turbulent transport, all research and development (R&D) from physics studies to power plants can be done at a single size (≈3-m radius) and B field (≈1.2 T, 12 kG); no scaling growth in size or field is required. Consequent R&D costs and time scales are estimated to be <12 years and $1 billion for development of prototype EXL/IEC fusion power systems. Research investment seems warranted in this small-scale alternative to large-scale MM/LTE systems.