ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Sümer Şahın, Ralph W. Moir, Sabahattin Ünalan
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1311-1325
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30316
Articles are hosted by Taylor and Francis Online.
A neutron physics analysis of the modified PACER concept was conducted to assess the required liquid zone thickness of which the volume fraction is 25% in the form of Li2BeF4 (Flibe) jets and 75% as void. These liquid jets surround a low-yield nuclear fusion explosive and protect the chamber walls. The neutronic calculations assumed a 30-m-radius underground spherical geometry cavity with a 1-cm-thick stainless steel liner attached to the excavated rock wall. Achievement of tritium breeding ratios of1.05 and LIS requires a Flibe thickness of 1.6 and 2.0 m, respectively, which results in average energy densities of 24 900 and 19085 J/g. Our calculations show that for a Flibe zone thickness > 2.5 m, the activation of the steel liner and rock would be low enough after 30 yr of operation that the cavity would satisfy the U.S. Nuclear Regulatory Commission's rules for “shallow burial” upon decommissioning, assuming other sources of radioactivity could be removed or qualified as well. This means that upon decommissioning, the site could essentially be abandoned, or the cavity could be used as a shallow burial site for other qualified materials.