ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mamoru Matsuoka, Masanori Araki, Makoto Mizuno†
Fusion Science and Technology | Volume 26 | Number 4 | December 1994 | Pages 1296-1303
Technical Paper | Energy Storage, Switching, and Conversion | doi.org/10.13182/FST94-A30314
Articles are hosted by Taylor and Francis Online.
The concept of a direct energy recovery system that applies a varying magnetic field is proposed for a negative-ion-based neutral beam injection system (NNB) to heat a plasma and/or drive a plasma current in a fusion reactor. The output beam energy and power of such an NNB will be ∼1 MeV and ∼ 10 MW/beamline, respectively, and nearly the same amounts of positive- and negative-ion beams remain unneutralized in an NNB by using a gas-neutralizing cell. Therefore, the output of a beam direct converter in an NNB is a bipolar direct current (dc) electric power with close to ±1 MV and several amperes if a conventional electrostatic or magnetostatic field is applied for ion beam separation. However, such high-voltage dc power is difficult to handle at the point of the regeneration of the power back to a commercial electric line because a very high voltage inverter tough enough to withstand occasional sparkdowns at recovery electrodes is required. If residual positive- and negative-ion beams are introduced to two or more electrodes in turn by a varying magnetic field, an alternating current (ac) electric power can be produced directly. The ac voltage can be easily lowered by a stepdown transformer, and a conventional, low-voltage inverter can be used. Such a beam direct converter will greatly reduce the technological difficulty involved in the regeneration of a recovered electric energy. The total efficiency of an NNB will be improved from ∼45 to ∼70% with a beam direct converter.