ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ann P. Kinzig, John P. Holdren, Paul J. Hibbard
Fusion Science and Technology | Volume 26 | Number 1 | August 1994 | Pages 79-104
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30302
Articles are hosted by Taylor and Francis Online.
Using the FuseDose II computer code, we calculated and compared several indices of safety and environmental (S&E) hazards for conceptual magnetic-fusion reactor designs based on a variety of structural materials—stainless steel, ferritic steel, vanadium-chromium-titanium alloy, and silicon-carbide—and, for comparison, the fuel of a liquid-metal fast breeder fission reactor. FuseDose II is a second-generation code derived from the Fuse-Dose code used in the U.S. Department of Energy's Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) study in the late 1980s. The comparisons update and extend those of the ESECOM study by adding the stainless-steel case, some new indices, graphical representations of the results, and other refinements. The results of our analysis support earlier conclusions concerning the S&E liabilities of stainless steel: The use of stainless steel would significantly reduce the S&E advantages of fusion over fission that are implied by the indices we consider, compared with the advantages portrayed in the ESECOM results for lower-activation fusion materials. The dose potentials represented by the radioactive materials that conceivably could be mobilized in severe accidents are substantially higher for the stainless steel case than for the lower activation fusion designs analyzed by ESECOM, and the waste disposal burden imposed by a stainless steel fusion reactor, though significantly smaller than that associated with a fission reactor of the same output, is high enough to rule out the chance of qualification for shallow burial under current regulations (in contrast to some of the lower activation fusion cases). This work underscores the conclusion that research to demonstrate the viability of the low-activation materials is essential if fusion is to achieve its potential for large and easily demonstrated S&E advantages over fission.