ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Akiyoshi Hatayama, Masatada Ogasawara, Michinori Yamauchi, Kunihiko Okano, Yuzo Fukai, Tomoaki Yoshida, Tadasu Takuma, Kenji Yamaji
Fusion Science and Technology | Volume 26 | Number 1 | August 1994 | Pages 27-45
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30299
Articles are hosted by Taylor and Francis Online.
Plasma size and other basic performance parameters for 1000-MW (electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is based on the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. Thus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW (electric) hybrids. Typical plasma parameters for 1000-MW (electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of Ip = 15 MA, and toroidal field on the axis of B0 = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is ∼ 7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket.