ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G. Tsotridis, I. Goded
Fusion Science and Technology | Volume 26 | Number 1 | August 1994 | Pages 7-16
Technical Paper | First-Wall Technology | doi.org/10.13182/FST94-A30297
Articles are hosted by Taylor and Francis Online.
Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions. The influence of high heat fluxes on the depths of heat-affected zones on Type 316 stainless steel with different sulfur impurities was studied for a range of energy densities and disruption times. It was demonstrated in small beam simulation experiments that under certain conditions, impurities through their effect on surface tension create convective flows, hence exercising a determining influence on the flow intensities and the resulting depth of molten layers. When a CO2 laser is used as a heat source, the role of impurities diminishes, due to high temperatures on the surface of the specimens, and all types of stainless steel behave like pure material. However, by using an alternative heat source that produces lower surface temperatures, e.g., tungsten inert gas, the stainless steel containing high sulfur produces much higher melting zone thicknesses compared with the low sulfur steels. Comparison between experimental results and existing theoretical predictions reveal significant differences in the depths of the melt layers.