ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
B. Coppi, P. Detragiache, S. Migliuolo, M. Nassi,, B. Rogers
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 353-367
Technical Paper | Alpha-Particle Special / Experimental Device | doi.org/10.13182/FST94-A30292
Articles are hosted by Taylor and Francis Online.
The Ignitor experiment has been designed to achieve fusion burn and ignition conditions in a high-density deuterium-tritium (D-T) plasma with a compact high magnetic field confinement configuration. The recent addition of a powerful system of radio-frequency heating to the design of Ignitor allows the investigation of physics issues relevant to advanced D-3He reactors and the second stability region forfinite-β plasmas. To maximize the production of D-3He power, a lower density regime is considered (e.g., n0 ≃ 3 × 1020 m−3) than that found to be optimal for D-T ignition (n0 ≃ 1 × 1021 m−3). This allows a relatively large population of 3He nuclei at high energies ≳0.65 MeV to be produced by a high density of injected power at the 3He ion cyclotron frequency (up to 18 MW injected in the plasma column of volume ≲10 m3). The investigation of second stability region access can be carried out in relatively low magnetic field and plasma current regimes with the added benefit that the duration of the plasma discharge can be extended over relatively long times. In fact, the Ignitor magnets can be brought down to an initial temperature of 30 K by gas-helium cooling. The low aspect ratio (≃2.8) and elongated plasma cross section of Ignitor make it suitable to reach both finite-β conditions and interesting plasma regimes at the same time. The Candor concept is the next step in the evolution of the Ignitor program. Candor is capable of producing plasma currents up to 25 MA with toroidal magnetic fields BT ≃ 13 T. Unlike Ignitor, Candor would operate with values of βp around 1.5 and with the central part of the plasma column in the second stability region. The D-3He ignition in this case can be reached by a combination of ICRF heating and alpha-particle heating due to D-T fusion reactions.