ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Augusta Airoldi, Giovanna Cenacchi
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 278-289
Technical Paper | Alpha-Particle Special / Plasma Engineering | doi.org/10.13182/FST94-A30284
Articles are hosted by Taylor and Francis Online.
Ignitor was proposed as a breakthrough in reaching ignition in a high magnetic field. The evolution of the plasma parameters is analyzed. Different growth scenarios for the plasma current and density are considered to optimize the global plasma performance while satisfying stability requirements. The toroidal field is consistent with the current increase adopted. The alpha particles produced are considered only as a power source for electron and ion thermal energy. The effects of the current ramp rate are discussed, and the importance of the density profile growth is indicated. The results show that stable trajectories through the (li,qψ,) pleine can be obtained, assuming the inward pinch is not too large, a (65/35) deuterium-tritium mixture still yields acceptable performance, and a 70% prompt loss of alpha particles is allowed.