ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Augusta Airoldi, Giovanna Cenacchi
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 278-289
Technical Paper | Alpha-Particle Special / Plasma Engineering | doi.org/10.13182/FST94-A30284
Articles are hosted by Taylor and Francis Online.
Ignitor was proposed as a breakthrough in reaching ignition in a high magnetic field. The evolution of the plasma parameters is analyzed. Different growth scenarios for the plasma current and density are considered to optimize the global plasma performance while satisfying stability requirements. The toroidal field is consistent with the current increase adopted. The alpha particles produced are considered only as a power source for electron and ion thermal energy. The effects of the current ramp rate are discussed, and the importance of the density profile growth is indicated. The results show that stable trajectories through the (li,qψ,) pleine can be obtained, assuming the inward pinch is not too large, a (65/35) deuterium-tritium mixture still yields acceptable performance, and a 70% prompt loss of alpha particles is allowed.