ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Gerald Kamelander, Franz Woloch, Gert Sdouz
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 241-248
Technical Paper | Alpha-Particle Special / Plasma Engineering | doi.org/10.13182/FST94-A30280
Articles are hosted by Taylor and Francis Online.
Recently, fast alpha-particle-driven kinetic Alfvén waves were investigated by means of a nonlinear turbulent theory, and an analytic expression for the corresponding diffusion coefficient was derived. This diffusion coefficient is introduced in a kinetic alpha-particle transport code based on the solution of a special Fokker-Planck equation by means of a multigroup formalism. The structure of Dα leads to a nonlinear and self-consistent problem. The simulation of realistic International Thermonuclear Experimental Reactor (ITER)-like plasmas by means of a plasma transport code and a description of the anomalous ion and electron transport by the widely accepted Rebut-Lallia model are dealt with. This code is combined with a kinetic alpha-particle transport code to calculate the alpha-particle power deposition profiles to the plasma electrons and the plasma ions. Results are presented for an ignition scenario for ITER-like plasmas. These seem to be the first plasma simulations using a self-consistent alpha-particle transport model. Estimating the effects of anomalous alpha-particle transport is accomplished by repeating each scenario switching off the alpha-particle transport routine and assuming local alpha-particle power deposition. Important physical quantities like density profiles and diffusion coefficients are discussed.