ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. Chaturvedi*, R. G. Mills
Fusion Science and Technology | Volume 25 | Number 2 | March 1994 | Pages 164-175
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30265
Articles are hosted by Taylor and Francis Online.
The important mechanisms of energy flow in a quasi-isobaric magnetic fusion device are studied. In Part I of this paper, the spatial profiles of plasma parameters that yield acceptable values of Qdt and plasma dimensions are determined. These prof lies are determined by balancing the dominant terms in the differential energy equations, i.e., conduction, brems-Strahlung, and collisional energy exchange, against each other. One class of equilibria was identified for a more detailed study. In Part II, the contributions of inelastic processes, radiation transport, and alpha-particle slowing down to the differential energy balances for electrons and ions are examined. Bremsstrahlung loss is found to be the dominant term for electrons. Inelastic processes involving hydrogen are important for ions in the fusion “core.” Impurity radiation can be important even with a low impurity content. Energy deposition by alpha particles is significant in the high-density edge, while cyclotron radiation transport plays some role in regions with large density gradients.