ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
S. Chaturvedi*, R. G. Mills
Fusion Science and Technology | Volume 25 | Number 2 | March 1994 | Pages 164-175
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30265
Articles are hosted by Taylor and Francis Online.
The important mechanisms of energy flow in a quasi-isobaric magnetic fusion device are studied. In Part I of this paper, the spatial profiles of plasma parameters that yield acceptable values of Qdt and plasma dimensions are determined. These prof lies are determined by balancing the dominant terms in the differential energy equations, i.e., conduction, brems-Strahlung, and collisional energy exchange, against each other. One class of equilibria was identified for a more detailed study. In Part II, the contributions of inelastic processes, radiation transport, and alpha-particle slowing down to the differential energy balances for electrons and ions are examined. Bremsstrahlung loss is found to be the dominant term for electrons. Inelastic processes involving hydrogen are important for ions in the fusion “core.” Impurity radiation can be important even with a low impurity content. Energy deposition by alpha particles is significant in the high-density edge, while cyclotron radiation transport plays some role in regions with large density gradients.