ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC, DOE update MOU
The Nuclear Regulatory Commission and the Department of Energy have updated a 2019 memorandum of understanding to coordinate on the review of advanced nuclear reactors and advanced reactor fuel technologies.
Turgut M. Gür, Martha Schreiber, George Lucier, Joseph A. Ferrante, Jason Chao, Robert A. Huggins§
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 487-501
Technical Paper | Electrolytic Device | doi.org/10.13182/FST94-A30256
Articles are hosted by Taylor and Francis Online.
The design and the operational characteristics of a new isoperibolic calorimeter that is developed to study the electrochemical insertion of deuterium into palladium are described. The design is simple and involves inexpensive materials to build. It possesses a number of distinct advantages that makes it suitable for thermal measurements in other electrochemical systems. It is insensitive to the nature and the location of the heat source within the electrochemical cell. The calibration constant is found to be stable with ±0.5% uncertainty over a wide range of input power levels up to 22 W. It also has the capability of operating over a wide temperature range. In principle, the calorimeter can be used up to 600°C, provided that the electrochemical cell design and materials are chosen appropriately. The design also provides flexibility to adjust the sensitivity of the calorimeter according to the needs of the system under study.