ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
IAEA organizes and cohosts first World Fusion Energy Group meeting
Last week's inaugural ministerial meeting of the IAEA World Fusion Energy Group (WFEG), in Rome, Italy, drew government ministers and senior officials who represented “dozens of countries” interested in fusion energy technology.
Melvin H. Miles, Benjamin F. Bush, Joseph J. Lagowski
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 478-486
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST94-A30255
Articles are hosted by Taylor and Francis Online.
Previous experiments showed that eight electrolysis gas samples collected during episodes of excess power production in two identical cells contained measurable amounts of 4He while six control samples gave no evidence for helium. However, the detection limit for helium could not be defined clearly. This study of helium diffusion into the Pyrex glass sample flasks establishes a minimum helium detection limit of 3 × 1013 atom/500 ml (3 ppb) for these experiments. New D2O and H2O control experiments involving helium measurements of electrolysis gas samples collected in metal flasks support this conclusion. This places the 4He production rate at 1011 to 1012 atom/s per watt of excess power, which is the correct magnitude for typical fusion reactions that yield helium as a product. Simultaneous evidence for excess power, helium production, and anomalous radiation was present in these experiments. Completely new experiments with more precise helium measurements are reported that again show simultaneous evidence for excess power, helium production, and anomalous radiation.