ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
H. W. Kugel, Y. Hirooka, J. Timberlake, R. Bell, A. England, R. Isler, S. Jones, R. Kaita, S. Kaye, M. Khandagle, M. Okabayashi, S. Paul, H. Takahashi, W. Tighe, S. Von Goeler, A. Post-Zwicker
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 377-387
Technical Paper | Plasma Engineering | doi.org/10.13182/FST94-A30244
Articles are hosted by Taylor and Francis Online.
Boronization was performed by plasma ablation of two solid boronized target probes. Probe-1, in a mushroom shape, consisted of a 10.7% boronized two-dimensional carbon-carbon composite containing 3.6g of boron in a B4C binder. Probe-2, in a rectangular shape, consisted of an 86% boronized graphite felt composite containing 19.5 g of 40-μm boron particles. Probe-1 boronization deposited ∼26 monolayers of boron. After boronization with Probe-1, the loop voltage in 1-MW neutral-beam-heated plasmas decreased 27%, and volt-second consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of ∼5. The central oxygen density decreased 15 to 20%. Carbon levels initially increased during boronization but were significantly reduced after boronization. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization deposited ∼70 monolayers. Probe-2 boronization exhibited similar improved plasma conditions, but for some parameters, a smaller percentage change occurred because of the previous boronization with Probe-1. The ablation rates of both probes were consistent with front-face temperatures above the boron melting point. The results demonstrate the performance of two different boronized probe materials and the relative simplicity and effectiveness of solid target boronization as a convenient, real-time impurity control technique.